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Abstract

Skin cancer is one of the most malignant types of cancer and melanoma is the most
aggressive type among skin cancers. In melanoma diagnosis, analysis of various
processes on the images in cellular and architectural levels are needed and the
collection of information resulted from these processes is the basis of diagnosis
of melanoma stage. Nuclei are important for both diagnosis and detecting other
entities in cellular level; thus, we aimed to detect nuclei in histopathological images
of skin biopsies, using an AdaBoost classifier. First, a set of features containing
intensity-based and structure-based features was created. Then, we used AdaBoost
to train on features and create a strong learner from a series of rules from weak
learners based on pixel features. As a post-process step, morphological functions
were applied to the results.

1 Introduction

The incidence of melanoma is rising faster than any other cancer, and 1 in 50 U.S. adults will be
diagnosed with melanoma this year alone. The gold standard for diagnosis of skin cancer is the
histopathological examination which the specimen is examined by pathologist manually [Cireşan
et al., 2013]. However, the whole slide image of one tissue sample usually has the size of 2.2× 109

pixels, which impose large difficulty for the pathologist to analyze the image completely. Thus,
manual diagnosis only based on a small portion of the image is often subjective and prone to variability
and automated diagnosis based on the entire slide is more desired [Lu and Mandal, 2012].

In melanoma diagnosis, analysis of various processes on the images in cellular and architectural
levels are needed and the collection of information resulted from these processes is the basis of
diagnosis of melanoma stage. Nuclei are important for both diagnosis and detecting other entities (i.e.
melanocytes, mitotic figures) in cellular level.

Many publications on nucleus detection are available. A simple and often used technique is thresh-
olding. Other techniques contain fuzzy c-means clustering [Hafiane et al., 2008] and and adaptive
thresholding [Petushi et al., 2006]. However, thresholding techniques require images with a well-
defined, preferably uniform background. Due to the large variation in staining uptake within an
image, this is often not possible [Gurcan et al., 2009].



Edge-based segmentation techniques, which try to connect local maxima of the gradient image,
like the h-maxima transform [Wählby et al., 2004], are overly sensitive to image texture. Finally, a
more sophisticated approach using edge-information is the Hough transform [Ortiz de Solorzano
et al., 2001]. However, the performance of this method drops for noncircular nuclei and has a high
computational complexity.

There are also approaches using Machine Learning reported by in literature. Wang et al. [Wang et al.,
2006] and Vink et al. [Vink and de Haan, 2011] both used Adaboost and report better performance
over support vector machine, which is the baseline method for classification task. Also, it would be
possible to construct a efficient classifier with a small subset of features from a large set of potentially
useful feature sets, which could provide insights into good features as well.

Based on our findings, We proposed to use Adaboost for constructing the nuclues detector in skin
whole-slide histopathological images.

2 Dataset

We had access to 240 cases of skin biopsy images, acquired by University of Washington School
of Medicine in their MPATH study (R01 CA151306). This dataset contains 5 different diagnoses:
Benign, Atypia, Melanoma in-situ, Invasive melanoma stage T1a, Invasive melanoma ≥ stage T1b.
Figure 1. shows an example of a melanoma stage T1a case. Layers of the skin on biopsy specimens
are as follow: the epidermis on top, the dermis below it, and the hypodermis below that layer. We
used one large image of size about 8000x4500 pixels, labeled it and divided it to training, validation
and testing crops.

Figure 1: An example of a skin biopsy image, melanoma stage T1a (left) and a zoomed sample of
dermis-epidermis region (right)

3 Method

Nuclei are important for both diagnosis and detecting other entities in cellular level; thus, we aimed to
detect nuclei in histopathological images of skin biopsies, using AdaBoost classifier with two features
set. The schematic flow of our proposed system can be seen in Figure 2. First, a set of features for
each pixel was calculated. In addition to that, we also calculated structure-based features for the
image. Since we had a very large feature space, we ran PCA on it. Then, we splitted the data and
used validation set to optimize hyperparameters. Next, the optimal Adaboost classifier was trained on
features to create a strong learner from a series of rules from weak learners. Then, morphological
functions was applied to the output to fill the holes and have a better result. Finally, we identified the
connected components in the nucleus mask and the centroid of the identified nucleus. We’ll go into
details of methodology in the following subsections.

3.1 Feature Sets

To train a detector, AdaBoost requires a set of features. Two sets of features were calculated from
the images in order to train and test the classifier, as shown in Figure 3. First set of features was
intensity-based [Vink et al., 2013] and the second one was structure-based features [Li and Allinson,
2008]. For the intensity-based features, we used several window sizes of S = 3, 5, 9, 15, 19, 25. Here
are the features in each set:
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Figure 2: An overview of proposed method.

Figure 3: Detail view of feature extraction.

3.1.1 Intensity-Based Features:

This set of features was applied to a window WS of size SxS for each pixel pi,j . The set contained
Sum, Dynamic Range (i.e. absolute difference between the maximum and minimum pixel values
in the window), Variance, Median and Haar-like (HL) features. HL features are used for taking
the contrast of background and nuclei into account. These features are two types: adjacent and
nonadjacent features and are calculates as below:

Haar Like Features:

• adjacent HL:

HLW1,W2(pi,j) = SqSum(W12, pi,j)− η.SqSum(W1, pi,j)

W12 =W1 + 2 ·W2

(1)
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• nonadjacent HL:

HLNAW1,W2,W3(pi,j) = SqSum(W123, pi,j)

− SqSum(W12, pi,j)

− η
′
.SqSum(W1, pi,j)

W123 =W1 + 2 · (W2 +W3)

(2)

• nonadjacent HL2:

HLNA2W1,W2,W3,W4
(pi,j) = SqSum(W1234, pi,j)

− SqSum(W123, pi,j)

− η
′′
.SqSum(W12, pi,j)

− SqSum(W1, pi,j)

W1234 =W123 + 2 ·W4

(3)

Where SqSum(W,pi,j) is the sum of a square of size WxW centered around pixel pi,j and η, η
′
, η

′′

represent the normalization factors. Figure 4 might be helpful to understand the calculation of this
features [Vink et al., 2013].

Figure 4: Haar-like box features The sum of pixel values of the green box is subtracted from the sum
of pixel values of the red box.

3.1.2 Structure-Based Features:

The features in this set were basically edge detector features. Gaussian gradient magnitude, Laplacian
of Gaussian, eigenvalues of Hessian matrix and the eigenvalues of the structure tensor were included
in this set.

3.2 PCA

After feature extraction part, we had a very large feature set since we had to calculate these features
for three channel of color (i.e. RGB) with various window sizes. Therefore, we decided to use PCA
to reduce the feature space size. We set the PCA to get the feature with the condition that variance
ratio would be higher than 0.99.

3.3 Splitting the Data

The dataset after PCA was splitted to training, validation and testing dataset. The ratio for doing
this was 70% of the whole data for training and validation together and remaining 30% for testing.
Then the training and validation was splitted to 90% for training and 10% for validation. We needed
validation set to optimize the hyperparameters we had in our classifier.
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3.4 Hyperparameter Optimization

We used AdaBoost to create a strong learner from a series of weak learners. In order have an optimal
AdaBoost, we used validation data to find the hyperparameters we had, which are the number of
estimaters and the learning rate of AdaBoost. We itearted over learning rate with these values: [0.1,
0.3, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 1] and the number of estimaters as follows: range(10, 500,
step = 20). The best parameter values found to be: number of estimaters = 30, learning rate = 1.

3.5 AdaBoost Classifier

AdaBboost (short for Adaptive Boosting) is a classifier which can combine the output of other
learning algorithms (weak learners) with weighted sum and output a boosted classifier. It has been
addressed in literature [Wang et al., 2006] and [Casagrande, 2006] that AdaBoost is more efficient and
performs significantly better that SVM. The psuedocode of Adaboost is summerized in Algorithm 1.

Algorithm 1 AdaBoost Algorithm

1. Initialize the observation weights wi = 1/N, i =, 2, ..., N.

2. For m = 1...M :

(a) Fit a classifier Gm(x) to the training data using weights wi.
(b) Compute:

errm =
∑N

i=1 wiI(yi 6=Gm(xi))∑N
i=1 wi

.

(c) Compute αm = log((1− errm)/errm)

(d) Set wi ← wi.exp[αmI(yi 6= Gm(xi))], i = 1, 2, ...N.

(e) Output G(x) = sign[
∑M

m=1 αmGm(x)]

Since it has been proven that AdaBoost can be very useful and efficient classifier, we implemented it
to detect nuclei using the aforementioned feature sets.

3.6 Morphological Functions

In order to fill the holes and have a better output, we used morphological functions as a post-
processing step. First we applied an opening function which is the dilation of the erosion of a set A
by a structuring element B. Then, a closing function was applied to the result of opening function.
Closing is the erosion of the dilation of a set of a binary image.

With on trial and error, we found out that using a opening function of size 8x8 followed by
a closing of size 2x2 generates decent outputs with high accuracy.

3.7 Finding Cell Centroid

The final step of our proposed method is to label the individual nuclei in the image so that we could
use the number of nucleus as a feature in future diagnosis task. An schematic overview of the
steps followed can be seen in Figure 5. To do this, we first label the connected components in the
classified mask. Then, using a area threshold (700 pixels in results presented), we identified the large
components that could contain multiple cells. Finally, we apply watershed segmentation method to
separate connected nucleus and label each nuclei, as shown in Figure 2 and Figure 5.

4 Results

4.1 Visualization

The AdaBoost was applied with different feature sets, with and without morphological functions as
post-processing. We also label the nuclei according to each results. Figure 6 shows the samples of
the results we got in each case.
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Figure 5: Overview of schemes of Nuclei labeling.

Figure 6: Figure. Nuclei detection results. Green color indicates the nuclei which are detected by the
classifier.

4.2 Evaluation

To evaluate the proposed detector, we used the standard evaluation metrics on each case. The metrics
are: Precision = tp/(tp+ fp) where tp is the number of true positives and fp the number of false
positives; recall = tp/(tp + fn) where tp is the number of true positives and fn the number of
false negatives; f1_score is the harmonic mean of precision and recall and is formulate like this:
2. precision.recallprecision+recall . The metrics are gathered in Table 1.

Table 1. Evaluation metrics for each case.
hhhhhhhhhhhhhhfeatures and morph

Metrics F1_score Precision Recall

Intensity features wo/ morph 89.37% 84.75% 94.52%
Intensity features w/ morph 89.32% 81.23% 99.21%
Intensity + structure wo/ morph 89.40% 84.71% 94.65%
Intensity + structure w/ morph 89.28% 81.14% 99.22%

To interpret the evaluation metrics, we should take this into account that structure-based features were
basically edge detection functions. Recall has the highest value when we have both intensity-based
and structure based which means we have less false negative results in the output. In this case,
classifier has not missed much of the nuclei. On the other hand, Precision is the highest when we only
use Intensity-based features. This shows that false positives were high in other cases when we add

6



structure-based features. It means that the classifier assume some of the non-nuclei pixels, probably
around the boarder of nuclei, to be nucleus.

5 Conclusion

In this project, we were able to detect the nuclei in the skin biopsy images using AdaBoost with
intensity-based and structure-based features. We ran the AdaBoost two separate times and then
post-process the results with morphological functions. It turned out that using both intensity-based
features and structure-based features and applying morphological functions on them gives the best
recall while using only intensity-based features gives the best precision value. The results from
nucleus labeling (finding the centroid of nucleus detected) is not perfect, as shown in Figure 6. If we
have more time, we could iterate through the calculated centroids, find those with area that is too
small and combine those with their closest centroids.

As a future work, we can try these tasks:

• Finding the boundary: for examining the shape and area of nuclei.
• Using nuclei to train a CNN for mitotic figures detection.
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